01687nas a2200121 4500008004300000245008300043210007000126520125600196100002201452700002901474700002601503856003601529 2007 en_Ud 00aThe number of eigenvalues of three-particle SchrÃ¶dinger operators on lattices0 anumber of eigenvalues of threeparticle SchrÃ¶dinger operators on 3 aWe consider the Hamiltonian of a system of three quantum mechanical particles (two identical fermions and boson)on the three-dimensional lattice $\\\\Z^3$ and interacting by means of zero-range attractive potentials. We describe the location and structure of the essential spectrum of the three-particle discrete Schr\\\\\\\"{o}dinger operator $H_{\\\\gamma}(K),$ $K$ being the total quasi-momentum and $\\\\gamma>0$ the ratio of the mass of fermion and boson.\\nWe choose for $\\\\gamma>0$ the interaction $v(\\\\gamma)$ in such a way the system consisting of one fermion and one boson has a zero energy resonance.\\nWe prove for any $\\\\gamma> 0$ the existence infinitely many eigenvalues of the operator $H_{\\\\gamma}(0).$ We establish for the number $N(0,\\\\gamma; z;)$ of eigenvalues lying below $z<0$ the following asymptotics $$ \\\\lim_{z\\\\to 0-}\\\\frac{N(0,\\\\gamma;z)}{\\\\mid \\\\log \\\\mid z\\\\mid \\\\mid}={U} (\\\\gamma) .$$ Moreover, for all nonzero values of the quasi-momentum $K \\\\in T^3 $ we establish the finiteness of the number $ N(K,\\\\gamma;\\\\tau_{ess}(K))$ of eigenvalues of $H(K)$ below the bottom of the essential spectrum and we give an asymptotics for the number $N(K,\\\\gamma;0)$ of eigenvalues below zero.1 aAlbeverio, Sergio1 aDell'Antonio, Gianfausto1 aLakaev, Saidakhmat N. uhttp://hdl.handle.net/1963/257600914nas a2200133 4500008004300000245007500043210006900118260002100187520047300208100002200681700002200703700001900725856003600744 2000 en_Ud 00aA Remark on One-Dimensional Many-Body Problems with Point Interactions0 aRemark on OneDimensional ManyBody Problems with Point Interactio bWorld Scientific3 aThe integrability of one dimensional quantum mechanical many-body problems with general contact interactions is extensively studied. It is shown that besides the pure (repulsive or attractive) $\\\\delta$-function interaction there is another singular point interactions which gives rise to a new one-parameter family of integrable quantum mechanical many-body systems. The bound states and scattering matrices are calculated for both bosonic and fermionic statistics.1 aAlbeverio, Sergio1 aDabrowski, Ludwik1 aFei, Shao-Ming uhttp://hdl.handle.net/1963/3214